Structural instabilities during cyclic loading of ultrafine-grained copper studied with micro bending experiments

Year: 
2016
Month: 
11
Day: 
17
Pages: 
351-358
DOI: 
10.1016/j.actamat.2016.11.040
Type: 
Journal Articles
Journal: 
Acta Materialia
Volume: 
125
Abstract: 

The cyclic mechanical properties and microstructural stability of severe plastically deformed copper were investigated by means of micro bending experiments. The ultrafine-grained structure of OFHC copper was synthesized utilizing the high pressure torsion (HPT) technique. Micron sized cantilevers were focused-ion-beam milled and subsequently tested within a scanning electron microscope in the low cycle fatigue regime at strain amplitudes in the range of 1.1 − 3.2 ∗ 10⁻³. It was found that HPT processed ultra-fine grained copper is prone to cyclic softening, which is a consequence of grain coarsening in the absence of shear banding in the micro samples. Novel insights into the grain coarsening mechanism were revealed by quasi in-situ EBSD scans, showing i) continuous migration of high angle grain boundaries, ii) preferential growth of larger grains at the expense of adjacent smaller ones, iii) a reduction of misorientation gradients within larger grains if the grain structure in the neighborhood is altered and iv) no evidence that a favorable crystallographic orientation drives grain growth during homogeneous coarsening at moderate accumulated strains, tested here.