Hardening of shear band in metallic glass

Year: 
2017
Month: 
8
Day: 
1
Pages: 
ARTN 7076
DOI: 
10.1038/s41598-017-07669-9
Type: 
Journal Articles
Journal: 
Scientific Reports
Volume: 
7
Abstract: 

Strain hardening, originating from defects such as the dislocation, avails conventional metals of high engineering reliability in applications. However, the hardenability of metallic glass is a longstanding concern due to the lack of similar defects. In this work, we carefully examine the stressstrain relationship in three bulk monolithic metallic glasses. The results show that hardening is surely available in metallic glasses if the effective load-bearing area is considered instantly. The hardening is proposed to result from the remelting and ensuing solidification of the shear-band material under a hydrostatic pressure imposed by the normal stress during the shear banding event. This appliedpressure quenching densifies the metallic glass by discharging the free volume. On the other hand, as validated by molecular dynamics simulations, the pressure promotes the icosahedral short-range order. The densification and icosahedral clusters both contribute to the increase of the shear strength and therefore the hardening in metallic glasses.